

Programa Analítico de Disciplina

MEC 241 - Laboratório de Fluidos

Departamento de Engenharia de Produção e Mecânica - Centro de Ciências Exatas e Tecnológicas

Catálogo: 2019

Número de créditos: 2 Carga horária semestral: 30h Carga horária semanal teórica: 0h Carga horária semanal prática: 2h

Semestres: II

Objetivos

Apresentar ao aluno equipamentos e métodos de medições associados a fluidos, bem como permitir a aplicação concreta dos princípios teóricos relativos ao comportamento dos fluidos.

Ementa

Noções básicas de EES e demonstrações e conceitos fundamentais. Estática dos Fluidos. Balanços integrais. Balanços diferenciais. Escoamento Invíscido. Escoamento viscoso interno incompressível. Aerodinâmica. Turbomáquinas. Avaliação.

Pré e co-requisitos	
MEC 242*	

Oferecimentos obrigatórios					
Curso	Período				
Engenharia Mecânica	6				

Oferecimentos optativos
Não definidos

MEC 241 - Laboratório de Fluidos

Conteúdo					
iidade	Т	Р	ED	Pj	Т
1.Noções básicas de EES e demonstrações e conceitos	0h	2h	0h	0h	2
fundamentais					
1.Sistemas de unidades:					
2.SI, Inglês absoluto, Inglês técnico, técnico, cgs					
3. Especificar as unidades de massa, comprimento, força,					
viscosidade dinâmica e cinemática de cada sistema					
4. Unidades - cm, in, ft,m; ft2, cm2, m2; gal, L, dm3, m3; kg, slug,					
lbm; d, kgf, N, pdl, lbf; Pa.s, cm2/s, cP, cS, kgf/cm2, psi, mca,					
atm; kg/m3, lbm/ft					
5.					
Demonstrar com trena os comprimentos					
7. Demonstrar com recipientes os volumes					
8. Demonstrar com balanças as massas					
Demonstrar com dinamômetro de mola as forças					
10. Demonstrar as pressões com o peso adequado em cima da					
área de definição de cada sistema de unidade					
11. Demonstrar a massa específica determinando a da água em					
g/cm3 e slug/ft					
12.					
13. Demonstrar o significado da viscosidade cinemática associada					
ao tempo de escoamento de dois fluidos em uma bureta					
14. Conceitos fundamentais:					
15. Demonstrar o conceito de sistema;					
16. Demonstrar o conceito de volume de controle;					
17. Demonstrar o conceito de linha de trajetória;					
18. Demonstrar o conceito de linha de corrente; 19. Demonstrar o conceito de linha de emissão;					
20. Demonstrar o conceito de linha de tempo;					
21. Demonstrar o conceito de regime permanente;					
22. Demonstrar o conceito de regime não permanente;					
23. Demonstrar o conceito de regime uniforme;					
24. Demonstrar o conceito de regime não uniforme;					
25. Demonstrar o conceito de regime laminar;					
26. Demonstrar o conceito de regime turbulento;					
27. Demonstrar o conceito de escoamento irrotacional;					
28. Demonstrar o conceito de escoamento rotacional;					
29. Demonstrar o conceito de escoamento 1D;					
30. Demonstrar o conceito de escoamento 2D;					
31. Demonstrar o conceito de escoamento 3D;					
32. Demonstrar o conceito de fluido Newtoniano;					
33. Demonstrar o conceito de fluido não Newtoniano					
2.Estática dos Fluidos	0h	4h	0h	0h	4ł
1.Forças em superfícies submersas					
2.Flutuação e estabilidade					
3.Manometria				L	
3.Balanços integrais	0h	4h	0h	0h	4
1.Massa	1		1		Ι ¨

 $A \ autenticidade \ deste \ documento \ pode \ ser \ conferida \ no \ site \ \underline{https://siadoc.ufv.br/validar-documento} \ com \ o \ c\'odigo: \ TPEZ.YBFF.US8E$

Total	0h	30h	0h	0h	t
9. Avaliação	0h	4h	0h	0h	T
3. Cavitação					
Análise dimensional Curvas características					
8. Turbomáquinas	0h	4h	0h	0h	
7. Aerodinâmica 1. Túnel de vento	0h	4h	0h	0h	
6. Escoamento viscoso interno incompressível 1. Fator de atrito em tubos de seção circular 2. Medição de vazão	0h	4h	0h	0h	
5. Escoamento Invíscido 1. Equação de euler 2. Equação de Bernoulli	0h	2h	0h	0h	
4. Balanços diferenciais 1. Navier-Stokes	0h	2h	0h	0h	
Quantidade de movimento linear Energia					

(T)Teórica; (P)Prática; (ED)Estudo Dirigido; (Pj)Projeto; Total(To)

Planejamento pedagógico					
Carga horária	Itens				
Teórica	Não definidos				
Prática	Prática demonstrativa realizada pelo professor ou monitor, Prática executada por todos os estudantes, Prática investigativa executada por todos os estudantes e Elaboração de relatórios				
Estudo Dirigido	Não definidos				
Projeto	Não definidos				
Recursos auxiliares	Não definidos				

MEC 241 - Laboratório de Fluidos

Bibliografias básicas				
Descrição	Exemplares			
FOX, R.W. & MCDONALD, A.T. Introdução à mecânica dos fluidos. 4.ed. Rio de Janeiro: Guanabara Koogan, 1998.	9			

Bibliografias complementares				
Descrição	Exemplares			
ÁSSY, T. Mecânica dos fluidos. Editora Plêiade Ltda, 1996.	0			
DAILY, J.; HARLEMAN, D. Fluid dynamics. Addison-Wesley Publishing Company, 1966.	0			
LENCASTRE, A. Manual de Hidráulica Geral. Editora da Universidade de São Paulo, 1972.	1			
MIRONER, A. Engineering fluid mechanics. McGraw-Hill Inc., 1979.	0			
MUNSON, B.; YOUNG, D.; OKIISHI, T. Fundamentos da mecânica dos fluidos. Editora Edgard Blücher, 1997.	0			
ROUSE, H. Elementary mechanics of fluids. John Wiley & Sons, Inc., 1964.	0			
VENNARD, J. Elementary fluid mechanics. John Wiley & Sons, Insc., 1975.	1			
VENNARD, J.; STREET, R. Elementos de mecânica dos fluidos. Editora Guanabara Dois S.A., 1978.	6			
WHITE, F. Fluid mechanics. McGraw-Hill, Inc., 1979.	0			